Bitrate Ladder Optimization for Live Video Streaming

Farzad Tashtarian

Department of Information Technology, University of Klagenfurt

Nov. 18, 2025

Agenda

- An overview of the ATHENA project
- Degree of freedom in video streaming
- ARTEMIS: Adaptive Bitrate Ladder Optimization for Live Video Streaming
- Future research directions

2

About me

Farzad Tashtarian

Ph.D. in Computer Engineering, Postdoctoral Researcher (2021-Present) University of Klagenfurt, Austria

ATHENA Project

https://www.tashtarian.net/ farzad.tashtarian@aau.at

Adaptive Streaming over HTTP and Emerging Networked Multimedia Services

ATHENA Project

Adaptive Streaming over HTTP and Emerging Networked Multimedia Services

- Application/transport layer enhancements
- Quality of Experience (QoE) models
- Low-latency HAS
- Learning-based HAS

	End-to-End Aspects	
Content Provisioning	Content Delivery	Content Consumption
 Video encoding for HAS Quality-aware encoding Learning-based encoding Multi-codec HAS 	 Edge computing Information CDN/SDN ↔ clients Netw. assistance for/by clients Utility evaluation 	 Bitrate adaptation schemes Playback improvements Context and user awareness Quality of Experience (QoE) studies

Farzad Tashtarian

Horizontal View of Video Streaming

Degree of Freedom in Video Streaming

Farzad Tashtarian

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

This paper is included in the Proceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation. April 16-18, 2024 • Santa Clara, CA, USA

ARTEMIS: Adaptive Bitrate Ladder Optimization for Live Video Streaming

Farzad Tashtarian

Abdelhak Bentaleb

Hadi Amirpour

Sergey Gorinsky

Junchen Jiang

Hermann Hellwagner

Christian Timmerer

Live Video Streaming Pipeline

- Context-aware, e.g., [Lebre
- Agnostic of the content a
- different versions of the content optimized for various playback conditions, e.g., different bitrates and resolutions

Bitrate Selection by an Adaptive Bitrate (ABR) Algorithm

The Highest Bitrate Might be Too Low

The Lowest Bitrate Might be Too High

Advertising Five Representations by the Manifest

Mega-Manifest for Better Bitrate Alignment

7.0 Mbps **Desired Bitrate** 5.0 Mbps 4.6 Mbps 4.5 Mbps **ABR** Objective Function 3.4 Mbps 4.5 Mbps Gap 2.8 Mbps Selected Bitrate 0.1 Mbps Large number of representations 0.5 Mbps Reduced gap between the 0.365 Mbps desired and served bitrates 0.24 Mbps 0.145 Mbps 0.09 Mbps Static during streaming Mega-Manifest

Advertising 19 Representations by the Mega-Manifest

Dependence of Video Quality on the Bitrate

VMAF: Video Multimethod Assessment Fusion

Impact of the Mega-Manifest on the Encoder

ARTEMIS Aims To:

- Adaptively select an optimal subset of the mega-manifest representations by using:
 - Predicted quality indicator as the peak signal-to-noise ratio (PSNR)
 - Received CDN logs containing the selected bitrates and QoE parameters of the players
- Be **end-to-end** and **agnostic** of the player/ABR types
- Operate in a time-slotted fashion

ARTEMIS Conceptual Architecture

ARTEMIS at a Glance

Optimal Temporary Ladder (OTL)

- Cornerstone of ARTEMIS
- **Optimal subset of the mega-manifest** representations utilized by the live encoder
- Challenges
 - ➤ How to select the OTL?
 - > Which constraints should the OTL impose?
 - ➤ When should the OTL be updated?

OTL: Maximum Length and Bitrate Reduction

OTL: Traffic Reduction

Farzad Tashtarian

OTL: Quality Improvement

Farzad Tashtarian

ARTEMIS MILP model

$$\begin{array}{ll} \textit{Maximize:} \quad \alpha \times \frac{q}{Q} + (1 - \alpha) \times \frac{s}{s} \\ \textit{subject to:} \quad \sum_{j \in B \ \& \ j < i} y_{j,i} + x_i = 1 \quad \forall i \in B, \\ \sum_{i \in B \ \& \ j < i} y_{j,i} \leq x_j \times m \quad \forall j \in B \\ \sum_{i \in B} x_i \leq \ell. \\ \sum_{i \in B} |x_i - \bar{x}_i| \leq \beta, \\ q \times \sum_{i \in B} r_i \leq \sum_{i \in B} \sum_{j \in B \ \& \ j < i} r_i \times y_{j,i} \times (F(b_j) - F(b_i)) \\ s \times \sum_{i \in B} r_i \leq \sum_{i \in B} \sum_{j \in B \ \& \ j < i} r_i \times y_{j,i} \times (b_i - b_j) \\ \textit{variables:} \quad x_i, \ y_{j,i} \in \{0, 1\}, \ q \leq 0, \text{ and } s \geq 0 \end{array}$$

OTL: Computation

- Objective function:
- Parameter *a*

Quality improvementTraffic reductioMaximize
$$\alpha \times \frac{q}{Q} + (1 - \alpha) \times \frac{s}{s}$$

- Relative importance of quality improvement vs. traffic reduction
- ➤ Computed from the stall information of the players

The value of α is selected based on the received stall information from the players in **CMCD**.

Time complexity of MILP model

Dependent on m, the number of representations in the mega-manifest

Performance Evaluation - Testbed

Evaluation Settings

- Network traces: LTE, AmazonFCC, Cascade-5, and Cascade-20
- Content type: animation, sport, movie, and documentary
- Baselines for ARTEMIS: five static bitrate ladders
- Players: dash.js

Bitrate Ladder	Length	Min. [Res.@Bitrate]	Max. [Res.@Bitrate]
Theo	4	360p@0.365 Mbps	1080p@4.0 Mbps
Mux	4	360p@0.75 Mbps	1080p@4.5 Mbps
Bitmovin	6	240p@0.145 Mbps	1080p@4.5 Mbps
Pensieve	6	360p@0.365 Mbps	1080p@4.3 Mbps
Twitch	6	360p@0.5 Mbps	1080p@7.0 Mbps
ARTEMIS	29	240p@0.145 Mbps	1080p@7.0 Mbps

Evaluation Settings

- Network traces: LTE, AmazonFCC, Cascade-5, and Cascade-20
- Content type: animation, sport, movie, and documentary
- Baselines for ARTEMIS: five static bitrate ladders
- Players: dash.js

BL Res.@Mbps	240p@0.145	240p@0.240	360p@0.365	360p@0.5	360p@0.6	360p@.75	360p@0.9	540p@1.0	480p@1.1	480p@1.2	480p@1.4	720p@1.6	720p@1.8	720p@2.0	720p@2.25	720p@2.5	1080p@2.8	720p@3.0	720p@3.2	720p@3.4	720p@3.75	1080p@4.0	1080p@4.3	1080p@4.5	1080p@5.0	1080p@5.5	1080p@6.0	1080p@6.5	1080p@7.0
Theo			1		5			1								1		2				1				2 2			
Bitmovin	1		1						1					1				23						1		5 3			
Mux						1		1								1								1					
Pensieve			1			1		8 - B		1			1				1	3					1		8	2 2	0		
Twitch				1					1			1						2	1		1								1
ARTEMIS	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Static Ladder (Twitch) vs. OTL : Experimental Setup

Farzad Tashtarian

Quality of Experience (QoE) with ARTEMIS vs. Five Static Bitrate Ladders

Average QoE up 11%

QoE and Latency with ARTEMIS vs. Five Static Bitrate Ladders

Average QoE up 11%

Average Latency down 18%

QoE and Latency with ARTEMIS vs. Five Static Bitrate Ladders

Average QoE up 11%

Average Latency down 18%

QoE, Latency, and **Stall** with ARTEMIS vs. Five Static Bitrate Ladders

Average QoE up 11%

Average Latency down 18% Average

Average Stall down 36%

Summary

• Adaptive bitrate ladder optimization for live video streaming

- ➤ Seamless enhancement of the **end-to-end** pipeline
- Accounting for the context via scalable player feedback
 Context aware passion DSND
- Content awareness via PSNR
- Mega-manifest to advertise a large number of representations
- Short dynamic ladder for encoding the content
 - ➤ An optimal subset of the mega-manifest representations
- Multi-objective **performance improvement**
 - ► Reduced **end-to-end** latency and **stall**
 - Increased quality of experience

Bitrate Ladder Optimization for Live Video Streaming

Farzad Tashtarian

Nov. 18, 2025

Thank you so much!

ARTEMIS Algorithm

Al	gorithm 1 ARTEMIS Algorithm
1:	for each time slot do
2:	$R \leftarrow [], T \leftarrow [], F \leftarrow \varnothing, O^* \leftarrow \varnothing$
3:	while in CI do > CI interval starts
4:	$T, R \leftarrow \text{ProcessCDNlogs}()$
5:	$F \leftarrow \text{QualityFunction}()$
6:	end while > OT interval starts
7:	$\alpha, f_1 \leftarrow \text{StallAnalysis}(T) \triangleright \text{Algorithm 2}$
8:	$O, q \leftarrow \text{Optimization}(\alpha, O^*, R, F)$
9:	if f_1 then
10:	SendOTLtoAOagent(O)
11:	$O^* \leftarrow O$
12:	else
13:	$f_2 \leftarrow \text{QualityAnalysis}(q, F) \triangleright \text{Alg. 3}$
14:	if f_2 then
15:	SendOTLtoAOagent(O)
16:	$O^* \leftarrow O$
17:	end if
18:	end if
19:	end for

Al	gorithm 2 StallAnalysis Function
1:	Inputs: LastStall, StallAlpha
2:	function STALLANALYSIS(T)
3:	$l^* \leftarrow \operatorname{mean}(T)$
4:	$\alpha \leftarrow \text{SelectAlpha}(\text{StallAlpha}, l^*)$
5:	$l \leftarrow \text{LastStall}$
6:	if $l == 0$ then
7:	$t \leftarrow min(1, l^*)$
8:	else
9:	$t \leftarrow min(1, \frac{l^*-l}{l})$
10:	end if
11:	LastStall $\leftarrow l^*$
12:	$p \leftarrow \text{GenerateRandom}(\text{uniform}[0,1))$
13:	if $p \leq t$ then
14:	$f \leftarrow \mathbf{True}$
15:	else
16:	$f \leftarrow \mathbf{False}$
17:	end if
18:	return α, f
19:	end function

Algorithm 3 QualityAnalysis Function 1: Inputs: O^* 2: function QUALITYANALYSIS(q, F)3: $d \leftarrow []$ 4: for $i \in B$ do 5: d.append(DiffQuality(b_i, r_i, a_i, F, i)) 6: end for 7: $q^* \leftarrow mean(d)$ 8: if q == 0 then 9: $t \leftarrow min(1,q^*)$ 10: else $t \leftarrow min(1, \frac{q^*-q}{q})$ 11: 12: end if 13: $p \leftarrow \text{GenerateRandom}(\text{uniform}[0,1))$ 14: if $p \leq t$ then 15: return True 16: else 17: return False 18: end if 19: end function 42

How to Set α ?

Set α based on the received stall information from the players in CMCD.

StallAlpha={α1:(t1,t2),α2:(t2,t3),...}

StallAlpha={1: [0,1], 0.9: [1,2], 0.8: [2,3], 0.7: [3,4], 0.6: [4,5], 0.5: [5,100]}

Time-slotted Operation by ARTEMIS

When Should OTL be Updated?

If compared to the previous timeslot, the stall is going up, or the new OTL significantly improves the quality.

$$\begin{array}{ll} \mbox{if } (rand() \leq P1) \ or \ (rand() \leq P2) \ \mbox{then} \\ | \ \ \mbox{Update OTL} \\ \mbox{end} \end{array}$$

 $L1 \leftarrow \text{Mean stall in previous OT}$ $L2 \leftarrow \text{Mean of the current stall}$ $P1 \leftarrow min(1, L2)$ $if \ L1 \neq 0 \ then$ $| \ P1 \leftarrow min(1, \frac{L2-L1}{L1})$ end

 $L1 \leftarrow \text{Mean quality impr. by previous OTL} \\ L2 \leftarrow \text{Mean quality impr. by the new OTL} \\ P2 \leftarrow min(1, L2) \\ \text{if } L1 \neq 0 \text{ then} \\ \mid P2 \leftarrow \min(1, \frac{L2 - L1}{L1}) \\ \text{end} \qquad 47$

OTL : Changes between Consecutive Time Slots

Comparing Stall, VMAF, QoE, and Encoded/Served Bitrate

